× Home Sitemap Disclaimer
Navigasi

Mister Phy

Semua tentang Sains

Pembahasan Soal Pertidaksamaan

Pembahasan Soal Pertidaksamaan

Dibawah ini adalah pembahasan soal-soal matematika tentang pertaksamaan. Mudah-mudahan pembahasan soal ini bermanfaat buat semua yang membutuhkan, terutama siswa yang kesulitan belajar matematika. Pembahasan soal ini dapat digunakan untuk bahan belajar dalam menghadapi ulangan harian, UTS, UAS, UKK, ujian sekolah, Ujian nasional dan ujian lainnya. Langsung saja bisa disimak pembahasan soalnya dibawah ini.

Nomor 1
Pertidaksamaan |x2 - 3 | < 2x mempunyai penyelesaian...
A. - 1 < x < 3
B. -3 < x < 1
C. 1 < x < 3
D. -3 < x < -1 atau 1 < x < 3
E. x > 1

Pembahasan
|x2 - 3 | < 2x maka -2x < x2 - 3 < 2x dapat dipecah jadi -2x < x2 - 3 dan x2 - 3 < 2x
x2 + 2x - 3 > 0 difaktorkan menjadi (x + 3) (x - 1) > 0 diperoleh x < -3 atau x > 1
x2 - 2x - 3 > 0 difaktorkan menjadi (x - 3) (x + 1) < 0 diperoleh -1 < x < 3
Jadi 1 < x < 3
Jawaban: C

Nomor 2
Himpunan penyelesaian |x2 - 2| ≤ 1 adalah nilai x yang memenuhi...
A. -√3 ≤  x ≤ √3
B. -1 ≤  x ≤ 1
C. 1 ≤  x ≤ √3
D. x ≤ -1 atau x ≥ 1
E. -√3 ≤  x ≤ 1 atau 1 ≤  x ≤ √3

Pembahasan
|x2 - 2| ≤ 1 menjadi -1 < x2 - 2 < 1 dipecah menjadi -1 < x2 - 2 dan   x2 - 2 < 1 sehingga:
 x2 - 2 > -1
 x2 - 1 > 0 difaktorkan diperoleh (x + 1) (x - 1) > 0 sehingga x < -1 atau x > 1
x2 - 2 < 1
x2 - 3 < 0 difaktorkan menjadi (x - √3) (x + √3) < 0 sehingga  -√3 ≤  x ≤ √3
diiriskan menjadi -√3 ≤  x ≤ 1 atau 1 ≤  x ≤ √3
Jawaban: E

Nomor 3
Pertaksamaan |x + 3 / x - 1| < 1 dipenuhi oleh...
A. x < 8
B. x < 1
C. x < 3
D. x < -1
E. x < -3

Pembahasan
|x + 3 / x - 1| < 1 menjadi x + 3 < x - 1 kemudian dikuadratkan ruas kiri dan kanan sehingga diperoleh:
x2 + 6 x + 9 < x2 – 2x + 1 syarat x ≠ 1
8x < -8 maka x < -1
Jawaban: E

Nomor 4
Semua nilai x yang memenuhi 22x – 2x+1 > 8 adalah...
A. x > 2
B. x > 4
C. x < -2
D. x < 2
E. x < -4

Pembahasan
22x – 2x+1 > 8
22x – 2 (2)x - 8 > 0
(2x – 4) (2x + 2) > 0 maka 2x < -2 tidak mungkin sehingga:
2x > 4 atau 2x > 22
Jadi x > 2
Jawaban: A

Nomor 5
Jika y = 2x + 1 maka nilai y untuk x yang memenuhi x2 – 8x + 15 < 0 adalah...
A. 4 < y < 6
B. 5 < y < 9
C. 6 < y < 10
D. 7 < y < 11
E. 8 < y < 12

Pembahasan
Faktorkan x2 – 8x + 15 < 0 didapat (x - 5) (x - 3) < 0 sehingga diperoleh 3 < x < 5, lalu kalikan dengan 2 diperoleh: 6 < 2x < 10 dan tambah dengan 1 maka 7 < 2x + 1 < 11
Jawaban: D

Nomor 6
Jika √(2x + 4) < 4 maka nilai x yang memenuhi pertaksamaan tersebut adalah...
A. x > -2
B. x ≥ 2
C. -2 ≤  x ≤ 6
D. -2 <  x ≤ 6
E. -2 < x < 6

Pembahasan
√(2x + 4) memiliki syarat x ≥ -2 (supaya hasilnya tidak negatif)
√(2x + 4) < 4 dikuadratkan ruas kiri dan kanannya diperoleh:
2x + 4 < 16
2x < 12
x < 6
Jadi -2 ≤ x < 6
Jawaban: C

Nomor 7
Nilai x yang memenuhi pertidaksamaan √(1 - x) < √(2x + 6) adalah...
A. -5/3 > x
B. - 5/3 < x
C. -5/3 < x ≤ 1
D. -3 ≤ x < 5/3
E. -3 ≤ x ≤ 1

Pembahasan
√(1 - x) < √(2x + 6) memiliki syarat x ≤ 1 dan x ≥ -3 sehingga syaratnya -3 ≤ x ≤ 1  (syarat ini supaya hasil diakar tidak ada yang negatif).
√(1 - x) < √(2x + 6) dikuadratkan ruas kanan dan kirinya supaya akarnya hilang:
1 - x < 2x + 6
x > - 5/3
Jika diiriskan dengan syarat maka -5/3 < x ≤ 1
Jawaban: C

Nomor 8 
Untuk 0 ≤ x ≤  π penyelesian pertaksamaan cos 4 x + 3 cos 2x - 1 < 0 adalah...
A. 1/3 π < x < 2/3 π
B. 1/3 π < x < 5/6 π
C. 1/6 π < x < 2/3 π
D. 1/6 π < x < 5/6 π
E. 1/4 π < x < 5/6 π

Pembahasan
cos 4x + 3 cos 2x - 1 < 0
2 cos2 2x + 3 cos 2x - 1 < 0
(2 cos 2x - 1) atau (cos 2x + 2 < 0
2 cos 2x - 1 = 0 maka cos 2x = 1/2 jadi 2x = 60o + k . 360o atau x = 30o + k . 360o
Untuk k = 0 maka x = 30o atau -30o 
Untuk k = 1 maka x = 210o dan 150o
Sedangkan untuk cos 2x + 2 = 0 tidak mungkin terjadi. Sehingga untuk 0 ≤ x ≤  π dengan irisan:
30o < x < 150o atau 1/6 π < x < 5/6 π
Jawaban: B

Nomor 9
Nilai yang memenuhi pertaksamaan  |log (x - 1)| < 2 ialah...
A. x > 101
B. x > 101 atau x < 1 + 10-2
C. 1,01 < x < 101
D. 99 < x < 101
E. x < 99 atau x > 99

Pembahasan
|log (x - 1)| < 2 diuraikan menjadi -2 < log (x - 1) < 2 dengan syarat x > 1 (supaya log tidak nol atau negatif)
log (x - 1) < 2 maka x - 1 < 100 jadi x < 101
log (x - 1) > -2 maka x - 1 > 0,01 jadi x > 1,01
Dengan diiriskan didapat: 1,01 < x < 101 
Jawaban: C
.
Topik: #matematika SMA #Pertidaksamaan


Tidak ada komentar:

Posting Komentar

Posting Lebih Baru Posting Lama Beranda
Langganan: Posting Komentar (Atom)

Cari Blog Ini

Arsip Blog

   

Popular Posts

  • Contoh soal rumus alkana, alkena, alkuna & pembahasan
    Nomor 1 Hidrokarbon yang banyak digunakan sebagai bahan dasar pembuatan plastik adalah golongan alkena. Rumus umum senyawa alkena adalah.......
  • Contoh soal tata nama senyawa biner, poliatomik dan pembahasannya
    Berikut adalah tata cara memberi nama senyawa biner : Senyawa biner yang terdiri dari atom logam dan nonlogam diberi nama dengan cara menyeb...
  • Model Atom Rutherford
    Pada tahun 1911 Hans William Geiger dan Ernest Marsden di bawah pengawasan Ernest Rutherford melakukan percobaan hamburan sinar alfa untuk ...
  • Pembahasan soal persamaan umum gas ideal
    Persamaan umum gas ideal Berikut ini merupakan pembahasan soal-soal fisika SMA kelas XI tentang persamaan umum gas ideal. Persamaan umum gas...
  • Ringkasan materi dan Pembahasan soal UN tentang fluida statis dan dinamis
    Ringkasan materi dan Pembahasan soal UN tentang fluida statis dan dinamis Ringkasan materi dan pembahasan soal-soal ujian nasional fisik...
  • Contoh Soal dan Pembahasan Usaha dan Daya
    usaha dan daya, materi fisika SMP Kelas 8 (VIII), tercakup rumus-rumus usaha, daya, perubahan energi, serta hubungannya dengan gaya-gaya, p...
  • Silabus Fisika SMA Kurikulum 2013 | Download Soal
    untuk download silabus fisika kurikulum 2013 silahkan ikuti link berikut    Silabus Fisika SMA Kurikulum 2013 | 

Halaman

  • Beranda
  • Site Map
  • Disclaimer
Ehcrodeh. Gambar tema oleh Matt Vince. Diberdayakan oleh Blogger.
Copyright © Suka Motor . Template by: Padja Tjiloeah